Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Closed Walk Sampler: An Efficient Method for Estimating Eigenvalues of Large Graphs (1805.07448v1)

Published 18 May 2018 in cs.SI

Abstract: Eigenvalues of a graph are of high interest in graph analytics for Big Data due to their relevance to many important properties of the graph including network resilience, community detection and the speed of viral propagation. Accurate computation of eigenvalues of extremely large graphs is usually not feasible due to the prohibitive computational and storage costs and also because full access to many social network graphs is often restricted to most researchers. In this paper, we present a series of new sampling algorithms which solve both of the above-mentioned problems and estimate the two largest eigenvalues of a large graph efficiently and with high accuracy. Unlike previous methods which try to extract a subgraph with the most influential nodes, our algorithms sample only a small portion of the large graph via a simple random walk, and arrive at estimates of the two largest eigenvalues by estimating the number of closed walks of a certain length. Our experimental results using real graphs show that our algorithms are substantially faster while also achieving significantly better accuracy on most graphs than the current state-of-the-art algorithms.

Citations (3)

Summary

We haven't generated a summary for this paper yet.