Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 76 tok/s
Gemini 2.5 Pro 59 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 449 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Neural Network Compression using Transform Coding and Clustering (1805.07258v1)

Published 18 May 2018 in cs.CV

Abstract: With the deployment of neural networks on mobile devices and the necessity of transmitting neural networks over limited or expensive channels, the file size of the trained model was identified as bottleneck. In this paper, we propose a codec for the compression of neural networks which is based on transform coding for convolutional and dense layers and on clustering for biases and normalizations. By using this codec, we achieve average compression factors between 7.9-9.3 while the accuracy of the compressed networks for image classification decreases only by 1%-2%, respectively.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.