Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Online Learning for Sparse PCA in High Dimensions: Exact Dynamics and Phase Transitions (1609.02191v1)

Published 7 Sep 2016 in cs.IT, cond-mat.dis-nn, and math.IT

Abstract: We study the dynamics of an online algorithm for learning a sparse leading eigenvector from samples generated from a spiked covariance model. This algorithm combines the classical Oja's method for online PCA with an element-wise nonlinearity at each iteration to promote sparsity. In the high-dimensional limit, the joint empirical measure of the underlying sparse eigenvector and its estimate provided by the algorithm is shown to converge weakly to a deterministic, measure-valued process. This scaling limit is characterized as the unique solution of a nonlinear PDE, and it provides exact information regarding the asymptotic performance of the algorithm. For example, performance metrics such as the cosine similarity and the misclassification rate in sparse support recovery can be obtained by examining the limiting dynamics. A steady-state analysis of the nonlinear PDE also reveals an interesting phase transition phenomenon. Although our analysis is asymptotic in nature, numerical simulations show that the theoretical predictions are accurate for moderate signal dimensions.

Citations (21)

Summary

We haven't generated a summary for this paper yet.