Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Single Shot Active Learning using Pseudo Annotators (1805.06660v1)

Published 17 May 2018 in stat.ML, cs.CV, and cs.LG

Abstract: Standard myopic active learning assumes that human annotations are always obtainable whenever new samples are selected. This, however, is unrealistic in many real-world applications where human experts are not readily available at all times. In this paper, we consider the single shot setting: all the required samples should be chosen in a single shot and no human annotation can be exploited during the selection process. We propose a new method, Active Learning through Random Labeling (ALRL), which substitutes single human annotator for multiple, what we will refer to as, pseudo annotators. These pseudo annotators always provide uniform and random labels whenever new unlabeled samples are queried. This random labeling enables standard active learning algorithms to also exhibit the exploratory behavior needed for single shot active learning. The exploratory behavior is further enhanced by selecting the most representative sample via minimizing nearest neighbor distance between unlabeled samples and queried samples. Experiments on real-world datasets demonstrate that the proposed method outperforms several state-of-the-art approaches.

Citations (29)

Summary

We haven't generated a summary for this paper yet.