Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Salutary Labeling with Zero Human Annotation (2405.17627v2)

Published 27 May 2024 in cs.LG

Abstract: Active learning strategically selects informative unlabeled data points and queries their ground truth labels for model training. The prevailing assumption underlying this machine learning paradigm is that acquiring these ground truth labels will optimally enhance model performance. However, this assumption may not always hold true or maximize learning capacity, particularly considering the costly labor annotations required for ground truth labels. In contrast to traditional ground truth labeling, this paper proposes salutary labeling, which automatically assigns the most beneficial labels to the most informative samples without human annotation. Specifically, we utilize the influence function, a tool for estimating sample influence, to select newly added samples and assign their salutary labels by choosing the category that maximizes their positive influence. This process eliminates the need for human annotation. Extensive experiments conducted on nine benchmark datasets demonstrate the superior performance of our salutary labeling approach over traditional active learning strategies. Additionally, we provide several in-depth explorations and practical applications of LLM fine-tuning.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets