Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 79 tok/s
Gemini 2.5 Pro 30 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 116 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 468 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

How many qubits are needed for quantum computational supremacy? (1805.05224v3)

Published 14 May 2018 in quant-ph

Abstract: Quantum computational supremacy arguments, which describe a way for a quantum computer to perform a task that cannot also be done by a classical computer, typically require some sort of computational assumption related to the limitations of classical computation. One common assumption is that the polynomial hierarchy (PH) does not collapse, a stronger version of the statement that P $\neq$ NP, which leads to the conclusion that any classical simulation of certain families of quantum circuits requires time scaling worse than any polynomial in the size of the circuits. However, the asymptotic nature of this conclusion prevents us from calculating exactly how many qubits these quantum circuits must have for their classical simulation to be intractable on modern classical supercomputers. We refine these quantum computational supremacy arguments and perform such a calculation by imposing fine-grained versions of the non-collapse assumption. Each version is parameterized by a constant $a$ and asserts that certain specific computational problems with input size $n$ require $2{an}$ time steps to be solved by a non-deterministic algorithm. Then, we choose a specific value of $a$ for each version that we argue makes the assumption plausible, and based on these conjectures we conclude that Instantaneous Quantum Polynomial-Time (IQP) circuits with 208 qubits, Quantum Approximate Optimization Algorithm (QAOA) circuits with 420 qubits and boson sampling circuits (i.e. linear optical networks) with 98 photons are large enough for the task of producing samples from their output distributions up to constant multiplicative error to be intractable on current technology. In the first two cases, we extend this to constant additive error by introducing an average-case fine-grained conjecture.

Citations (93)

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube