Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Word learning and the acquisition of syntactic--semantic overhypotheses (1805.04988v1)

Published 14 May 2018 in cs.CL

Abstract: Children learning their first language face multiple problems of induction: how to learn the meanings of words, and how to build meaningful phrases from those words according to syntactic rules. We consider how children might solve these problems efficiently by solving them jointly, via a computational model that learns the syntax and semantics of multi-word utterances in a grounded reference game. We select a well-studied empirical case in which children are aware of patterns linking the syntactic and semantic properties of words --- that the properties picked out by base nouns tend to be related to shape, while prenominal adjectives tend to refer to other properties such as color. We show that children applying such inductive biases are accurately reflecting the statistics of child-directed speech, and that inducing similar biases in our computational model captures children's behavior in a classic adjective learning experiment. Our model incorporating such biases also demonstrates a clear data efficiency in learning, relative to a baseline model that learns without forming syntax-sensitive overhypotheses of word meaning. Thus solving a more complex joint inference problem may make the full problem of language acquisition easier, not harder.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Jon Gauthier (11 papers)
  2. Roger Levy (43 papers)
  3. Joshua B. Tenenbaum (257 papers)
Citations (10)

Summary

We haven't generated a summary for this paper yet.