Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Theory of Language Learning (2106.14612v1)

Published 6 Jun 2021 in cs.CL and q-bio.NC

Abstract: A theory of language learning is described, which uses Bayesian induction of feature structures (scripts) and script functions. Each word sense in a language is mentally represented by an m-script, a script function which embodies all the syntax and semantics of the word. M-scripts form a fully-lexicalised unification grammar, which can support adult language. Each word m-script can be learnt robustly from about six learning examples. The theory has been implemented as a computer model, which can bootstrap-learn a language from zero vocabulary. The Bayesian learning mechanism is (1) Capable: to learn arbitrarily complex meanings and syntactic structures; (2) Fast: learning these structures from a few examples each; (3) Robust: learning in the presence of much irrelevant noise, and (4) Self-repairing: able to acquire implicit negative evidence, using it to learn exceptions. Children learning language are clearly all of (1) - (4), whereas connectionist theories fail on (1) and (2), and symbolic theories fail on (3) and (4). The theory is in good agreement with many key facts of language acquisition, including facts which are problematic for other theories. It is compared with over 100 key cross-linguistic findings about acquisition of the lexicon, phrase structure, morphology, complementation and control, auxiliaries, verb argument structures, gaps and movement - in nearly all cases giving unforced agreement without extra assumptions.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (1)
  1. Robert Worden (10 papers)
Citations (2)

Summary

We haven't generated a summary for this paper yet.