Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The potential function and ladder variables of a recurrent random walk on $\mathbb{Z}$ with infinite variance (1805.03971v5)

Published 10 May 2018 in math.PR

Abstract: We consider a recurrent random walk of i.i.d. increments on the one-dimensional integer lattice and obtain a formula relating the hitting distribution of a half-line with the potential function, $a(x)$, of the random walk. Applying it, we derive an asymptotic estimate of $a(x)$ and thereby a criterion for $a(x)$ to be bounded on a half-line. The application is also made to estimate some hitting probabilities as well as to derive asymptotic behaviour for large times of the walk conditioned never to visit the origin.

Summary

We haven't generated a summary for this paper yet.