Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Recurrent random walks on $\mathbb{Z}$ with infinite variance: transition probabilities of them killed on a finite set (1808.01484v1)

Published 4 Aug 2018 in math.PR

Abstract: In this paper we consider an irreducible random walk on the integer lattice $\mathbb{Z}$ that is in the domain of normal attraction of a strictly stable process with index $\alpha\in (1, 2)$ and obtain the asymptotic form of the distribution of the hitting time of the origin and that of the transition probability for the walk killed when it hits a finite set. The asymptotic forms obtained are valid uniformly in the natural domain of the space and time variables.

Summary

We haven't generated a summary for this paper yet.