Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 91 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 30 tok/s
GPT-5 High 33 tok/s Pro
GPT-4o 98 tok/s
GPT OSS 120B 483 tok/s Pro
Kimi K2 242 tok/s Pro
2000 character limit reached

Siamese networks for generating adversarial examples (1805.01431v1)

Published 3 May 2018 in cs.LG and stat.ML

Abstract: Machine learning models are vulnerable to adversarial examples. An adversary modifies the input data such that humans still assign the same label, however, machine learning models misclassify it. Previous approaches in the literature demonstrated that adversarial examples can even be generated for the remotely hosted model. In this paper, we propose a Siamese network based approach to generate adversarial examples for a multiclass target CNN. We assume that the adversary do not possess any knowledge of the target data distribution, and we use an unlabeled mismatched dataset to query the target, e.g., for the ResNet-50 target, we use the Food-101 dataset as the query. Initially, the target model assigns labels to the query dataset, and a Siamese network is trained on the image pairs derived from these multiclass labels. We learn the \emph{adversarial perturbations} for the Siamese model and show that these perturbations are also adversarial w.r.t. the target model. In experimental results, we demonstrate effectiveness of our approach on MNIST, CIFAR-10 and ImageNet targets with TinyImageNet/Food-101 query datasets.

Citations (4)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.