Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Scrambled Linear Pseudorandom Number Generators (1805.01407v3)

Published 3 May 2018 in cs.DS, cs.CR, and cs.MS

Abstract: $\mathbf F_2$-linear pseudorandom number generators are very popular due to their high speed, to the ease with which generators with a sizable state space can be created, and to their provable theoretical properties. However, they suffer from linear artifacts that show as failures in linearity-related statistical tests such as the binary-rank and the linear-complexity test. In this paper, we give two new contributions. First, we introduce two new $\mathbf F_2$-linear transformations that have been handcrafted to have good statistical properties and at the same time to be programmable very efficiently on superscalar processors, or even directly in hardware. Then, we describe some scramblers, that is, nonlinear functions applied to the state array that reduce or delete the linear artifacts, and propose combinations of linear transformations and scramblers that give extremely fast pseudorandom number generators of high quality. A novelty in our approach is that we use ideas from the theory of filtered linear-feedback shift registers to prove some properties of our scramblers, rather than relying purely on heuristics. In the end, we provide simple, extremely fast generators that use a few hundred bits of memory, have provable properties, and pass strong statistical tests.

Citations (101)

Summary

We haven't generated a summary for this paper yet.