Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 82 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 117 tok/s Pro
Kimi K2 200 tok/s Pro
GPT OSS 120B 469 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Potentials and Limitations of Deep Neural Networks for Cognitive Robots (1805.00777v1)

Published 2 May 2018 in cs.RO

Abstract: Although Deep Neural Networks reached remarkable performance on several benchmarks and even gained scientific publicity, they are not able to address the concept of cognition as a whole. In this paper, we argue that those architectures are potentially interesting for cognitive robots regarding their perceptual representation power for audio and vision data. Then, we identify crucial settings for cognitive robotics where deep neural networks have as yet only contributed little compared to the challenges in cognitive robotics. Finally, we argue that the rather unexplored area of Reservoir Computing qualifies to be an integral part of sequential learning in this context.

Citations (5)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.