Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 87 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 16 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 105 tok/s Pro
GPT OSS 120B 471 tok/s Pro
Kimi K2 193 tok/s Pro
2000 character limit reached

A proof of the Murnaghan--Nakayama rule using Specht modules and tableau combinatorics (1805.00255v2)

Published 1 May 2018 in math.RT and math.CO

Abstract: The Murnaghan--Nakayama rule is a combinatorial rule for the character values of symmetric groups. We give a new combinatorial proof by explicitly finding the trace of the representing matrices in the standard basis of Specht modules. This gives an essentially bijective proof of the rule. A key lemma is an extension of a straightening result proved by the second author to skew-tableaux. Our module theoretic methods also give short proofs of Pieri's rule and Young's rule.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.