Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Tensor calculus in spherical coordinates using Jacobi polynomials. Part-I: Mathematical analysis and derivations (1804.10320v1)

Published 27 Apr 2018 in math.NA, astro-ph.IM, math.CA, and physics.flu-dyn

Abstract: This paper presents a method for the accurate and efficient computations on scalar, vector and tensor fields in three-dimensional spherical polar coordinates. The methods uses spin-weighted spherical harmonics in the angular directions and rescaled Jacobi polynomials in the radial direction. For the 2-sphere, spin-weighted harmonics allow for automating calculations in a fashion as similar to Fourier series as possible. Derivative operators act as wavenumber multiplication on a set of spectral coefficients. After transforming the angular directions, a set of orthogonal tensor rotations put the radially dependent spectral coefficients into individual spaces each obeying a particular regularity condition at the origin. These regularity spaces have remarkably simple properties under standard vector-calculus operations, such as \textit{grad} and \textit{div}. We use a hierarchy of rescaled Jacobi polynomials for a basis on these regularity spaces. It is possible to select the Jacobi-polynomial parameters such that all relevant operators act in a minimally banded way. Altogether, the geometric structure allows for the accurate and efficient solution of general partial differential equations in the unit ball.

Citations (37)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.