Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A lower bound for the $k$-multicolored sum-free problem in $\mathbb{Z}^n_m$ (1804.08837v2)

Published 24 Apr 2018 in math.CO

Abstract: In this paper, we give a lower bound for the maximum size of a $k$-colored sum-free set in $\mathbb{Z}_mn$, where $k\geq 3$ and $m\geq 2$ are fixed and $n$ tends to infinity. If $m$ is a prime power, this lower bound matches (up to lower order terms) the previously known upper bound for the maximum size of a $k$-colored sum-free set in $\mathbb{Z}_mn$. This generalizes a result of Kleinberg-Sawin-Speyer for the case $k=3$ and as part of our proof we also generalize a result by Pebody that was used in the work of Kleinberg-Sawin-Speyer. Both of these generalizations require several key new ideas.

Summary

We haven't generated a summary for this paper yet.