Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 84 tok/s
Gemini 2.5 Pro 45 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 21 tok/s Pro
GPT-4o 92 tok/s Pro
GPT OSS 120B 425 tok/s Pro
Kimi K2 157 tok/s Pro
2000 character limit reached

On the Relationship Between Ehrhart Unimodality and Ehrhart Positivity (1804.08258v1)

Published 23 Apr 2018 in math.CO

Abstract: For a given lattice polytope, two fundamental problems within the field of Ehrhart theory are to (1) determine if its (Ehrhart) $h\ast$-polynomial is unimodal and (2) to determine if its Ehrhart polynomial has only positive coefficients. The former property of a lattice polytope is known as Ehrhart unimodality and the latter property is known as Ehrhart positivity. These two properties are often simultaneously conjectured to hold for interesting families of lattice polytopes, yet they are typically studied in parallel. As to answer a question posed at the 2017 Introductory Workshop to the MSRI Semester on Geometric and Topological Combinatorics, the purpose of this note is to show that there is no general implication between these two properties in any dimension greater than two. To do so, we investigate these two properties for families of well-studied lattice polytopes, assessing one property where previously only the other had been considered. Consequently, new examples of each phenomena are developed, some of which provide an answer to an open problem in the literature. The well-studied families of lattice polytopes considered include zonotopes, matroid polytopes, simplices of weighted projective spaces, empty lattice simplices, smooth polytopes, and $s$-lecture hall simplices.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (2)