Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 56 tok/s
Gemini 2.5 Pro 39 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 155 tok/s Pro
GPT OSS 120B 476 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Multiple factor analysis of distributional data (1804.07192v1)

Published 19 Apr 2018 in stat.ME and stat.OT

Abstract: In the framework of Symbolic Data Analysis (SDA), distribution-variables are a particular case of multi-valued variables: each unit is represented by a set of distributions (e.g. histograms, density functions or quantile functions), one for each variable. Factor analysis (FA) methods are primary exploratory tools for dimension reduction and visualization. In the present work, we use Multiple Factor Analysis (MFA) approach for the analysis of data described by distributional variables. Each distributional variable induces a set new numeric variable related to the quantiles of each distribution. We call these new variables as \textit{quantile variables} and the set of quantile variables related to a distributional one is a block in the MFA approach. Thus, MFA is performed on juxtaposed tables of quantile variables. \ We show that the criterion decomposed in the analysis is an approximation of the variability based on a suitable metrics between distributions: the squared $L_2$ Wasserstein distance. \ Applications on simulated and real distributional data corroborate the method. The interpretation of the results on the factorial planes is performed by new interpretative tools that are related to the several characteristics of the distributions (location, scale and shape).

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube