Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 73 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 156 tok/s Pro
GPT OSS 120B 388 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

On incidence choosability of cubic graphs (1804.06036v1)

Published 17 Apr 2018 in math.CO

Abstract: An incidence of a graph $G$ is a pair $(u,e)$ where $u$ is a vertex of $G$ and $e$ is an edge of $G$ incident with $u$. Two incidences $(u,e)$ and $(v,f)$ of $G$ are adjacent whenever (i) $u=v$, or (ii) $e=f$, or (iii) $uv=e$ or $uv=f$. An incidence $k$-coloring of $G$ is a mapping from the set of incidences of $G$ to a set of $k$ colors such that every two adjacent incidences receive distinct colors. The notion of incidence coloring has been introduced by Brualdi and Quinn Massey (1993) from a relation to strong edge coloring, and since then, attracted by many authors. On a list version of incidence coloring, it was shown by Benmedjdoub et. al. (2017) that every Hamiltonian cubic graph is incidence 6-choosable. In this paper, we show that every cubic (loopless) multigraph is incidence 6-choosable. As a direct consequence, it implies that the list strong chromatic index of a $(2,3)$-bipartite graph is at most 6, where a (2,3)-bipartite graph is a bipartite graph such that one partite set has maximum degree at most 2 and the other partite set has maximum degree at most 3.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.