Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 82 tok/s
Gemini 2.5 Pro 43 tok/s Pro
GPT-5 Medium 30 tok/s
GPT-5 High 32 tok/s Pro
GPT-4o 95 tok/s
GPT OSS 120B 469 tok/s Pro
Kimi K2 212 tok/s Pro
2000 character limit reached

Learning How to Self-Learn: Enhancing Self-Training Using Neural Reinforcement Learning (1804.05734v1)

Published 16 Apr 2018 in cs.CL

Abstract: Self-training is a useful strategy for semi-supervised learning, leveraging raw texts for enhancing model performances. Traditional self-training methods depend on heuristics such as model confidence for instance selection, the manual adjustment of which can be expensive. To address these challenges, we propose a deep reinforcement learning method to learn the self-training strategy automatically. Based on neural network representation of sentences, our model automatically learns an optimal policy for instance selection. Experimental results show that our approach outperforms the baseline solutions in terms of better tagging performances and stability.

Citations (10)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (2)