Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The Relevance of Text and Speech Features in Automatic Non-native English Accent Identification (1804.05689v1)

Published 16 Apr 2018 in cs.CL

Abstract: This paper describes our experiments with automatically identifying native accents from speech samples of non-native English speakers using low level audio features, and n-gram features from manual transcriptions. Using a publicly available non-native speech corpus and simple audio feature representations that do not perform word/phoneme recognition, we show that it is possible to achieve close to 90% classification accuracy for this task. While character n-grams perform similar to speech features, we show that speech features are not affected by prompt variation, whereas ngrams are. Since the approach followed can be easily adapted to any language provided we have enough training data, we believe these results will provide useful insights for the development of accent recognition systems and for the study of accents in the context of language learning.

Summary

We haven't generated a summary for this paper yet.