Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Leveraging Native Language Speech for Accent Identification using Deep Siamese Networks (1712.08992v2)

Published 25 Dec 2017 in cs.CL, cs.LG, cs.SD, and eess.AS

Abstract: The problem of automatic accent identification is important for several applications like speaker profiling and recognition as well as for improving speech recognition systems. The accented nature of speech can be primarily attributed to the influence of the speaker's native language on the given speech recording. In this paper, we propose a novel accent identification system whose training exploits speech in native languages along with the accented speech. Specifically, we develop a deep Siamese network-based model which learns the association between accented speech recordings and the native language speech recordings. The Siamese networks are trained with i-vector features extracted from the speech recordings using either an unsupervised Gaussian mixture model (GMM) or a supervised deep neural network (DNN) model. We perform several accent identification experiments using the CSLU Foreign Accented English (FAE) corpus. In these experiments, our proposed approach using deep Siamese networks yield significant relative performance improvements of 15.4 percent on a 10-class accent identification task, over a baseline DNN-based classification system that uses GMM i-vectors. Furthermore, we present a detailed error analysis of the proposed accent identification system.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Aditya Siddhant (22 papers)
  2. Preethi Jyothi (51 papers)
  3. Sriram Ganapathy (72 papers)
Citations (10)

Summary

We haven't generated a summary for this paper yet.