Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Deep Active Survival Analysis Approach for Precision Treatment Recommendations: Application of Prostate Cancer (1804.03280v1)

Published 10 Apr 2018 in cs.LG, cs.CY, and stat.ML

Abstract: Survival analysis has been developed and applied in the number of areas including manufacturing, finance, economics and healthcare. In healthcare domain, usually clinical data are high-dimensional, sparse and complex and sometimes there exists few amount of time-to-event (labeled) instances. Therefore building an accurate survival model from electronic health records is challenging. With this motivation, we address this issue and provide a new survival analysis framework using deep learning and active learning with a novel sampling strategy. First, our approach provides better representation with lower dimensions from clinical features using labeled (time-to-event) and unlabeled (censored) instances and then actively trains the survival model by labeling the censored data using an oracle. As a clinical assistive tool, we introduce a simple effective treatment recommendation approach based on our survival model. In the experimental study, we apply our approach on SEER-Medicare data related to prostate cancer among African-Americans and white patients. The results indicate that our approach outperforms significantly than baseline models.

Citations (63)

Summary

We haven't generated a summary for this paper yet.