Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 41 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 178 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Bayesian Estimation of Attribute and Identification Disclosure Risks in Synthetic Data (1804.02784v3)

Published 9 Apr 2018 in stat.ME

Abstract: The synthetic data approach to data confidentiality has been actively researched on, and for the past decade or so, a good number of high quality work on developing innovative synthesizers, creating appropriate utility measures and risk measures, among others, have been published. Comparing to a large volume of work on synthesizers development and utility measures creation, measuring risks has overall received less attention. This paper focuses on the detailed construction of some Bayesian methods proposed for estimating disclosure risks in synthetic data. In the processes of presenting attribute and identification disclosure risks evaluation methods, we highlight key steps, emphasize Bayesian thinking, illustrate with real application examples, and discuss challenges and future research directions. We hope to give the readers a comprehensive view of the Bayesian estimation procedures, enable synthetic data researchers and producers to use these procedures to evaluate disclosure risks, and encourage more researchers to work in this important growing field.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)