Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The polytopal structure of the tight-span of a totally split-decomposable metric (1804.01821v1)

Published 5 Apr 2018 in math.CO

Abstract: The tight-span of a finite metric space is a polytopal complex that has appeared in several areas of mathematics. In this paper we determine the polytopal structure of the tight-span of a totally split decomposable (finite) metric. Totally split-decomposable metrics are a generalization of tree-metrics and have importance within phylogenetics. In previous work, we showed that the cells of the tight-span of such a metric are zonotopes that are polytope isomorphic to either hypercubes or rhombic dodecahedra. Here, we extend these results and show that the tight-spanof a totally split-decomposable metric can be broken up into a canonical collection of polytopal complexes whose polytopal structures can be directly determined from the metric. This allows us to also completely determine the polytopal structure of the tight-span of a totally split-decomposable metric in a very direct way.We anticipate that our improved understanding of this structure may ultimately lead to improved techniques for phylogenetic inference.

Summary

We haven't generated a summary for this paper yet.