Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Injective Hulls of Infinite Totally Split-Decomposable Metric Spaces (1505.07807v1)

Published 28 May 2015 in math.MG, math.CO, and math.GR

Abstract: We consider the class of (possibly) infinite metric spaces with integer-valued totally split-decomposable metric and possessing an injective hull which has the structure of a polyhedral complex. For this class, we give a characterization for the injective hull to be combinatorially equivalent to a CAT(0) cube complex. In order to obtain these results, we extend the decomposition theory introduced by Bandelt and Dress in 1992 as well as results on the tight span of totally split-decomposable metric spaces proved by Huber, Koolen and Moulton in 2006. As an application, and using results of Lang of 2013, we obtain proper actions on CAT(0) cube complexes for finitely generated groups endowed with a totally split-decomposable word metric whose associated splits satisfy an easy combinatorial property. In the case of Gromov hyperbolic groups, the action is proper as well as cocompact.

Summary

We haven't generated a summary for this paper yet.