Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 79 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 186 tok/s Pro
GPT OSS 120B 445 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

On the growth of the support of positive vorticity for 2D Euler equation in an infinite cylinder (1804.00081v1)

Published 30 Mar 2018 in math.AP

Abstract: We consider the incompressible 2D Euler equation in an infinite cylinder $\mathbb{R}\times \mathbb{T}$ in the case when the initial vorticity is non-negative, bounded, and compactly supported. We study $d(t)$, the diameter of the support of vorticity, and prove that it allows the following bound: $d(t)\leq Ct{1/3}\log2 t$ when $t\rightarrow\infty$.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.