Almost sure, L_1- and L_2-growth behavior of supercritical multi-type continuous state and continuous time branching processes with immigration (1803.10176v3)
Abstract: Under a first order moment condition on the immigration mechanism, we show that an appropriately scaled supercritical and irreducible multi-type continuous state and continuous time branching process with immigration (CBI process) converges almost surely. If an $x \log(x)$ moment condition on the branching mechanism does not hold, then the limit is zero. If this $x \log(x)$ moment condition holds, then we prove $L_1$ convergence as well. The projection of the limit on any left non-Perron eigenvector of the branching mean matrix is vanishing. If, in addition, a suitable extra power moment condition on the branching mechanism holds, then we provide the correct scaling for the projection of a CBI process on certain left non-Perron eigenvectors of the branching mean matrix in order to have almost sure and $L_1$ limit. Moreover, under a second order moment condition on the branching and immigration mechanisms, we prove $L_2$ convergence of an appropriately scaled process and the above mentioned projections as well. A representation of the limits is also provided under the same moment conditions.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.