Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 73 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 156 tok/s Pro
GPT OSS 120B 388 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

On essentially 4-edge-connected cubic bricks (1803.08713v3)

Published 23 Mar 2018 in math.CO

Abstract: Lov\'asz (1987) proved that every matching covered graph $G$ may be uniquely decomposed into a list of bricks (nonbipartite) and braces (bipartite); we let $b(G)$ denote the number of bricks. An edge $e$ is removable if $G-e$ is also matching covered; furthermore, $e$ is $b$-invariant if $b(G-e)=1$, and $e$ is quasi-$b$-invariant if $b(G-e)=2$. (Each edge of the Petersen graph is quasi-$b$-invariant.) A brick $G$ is near-bipartite if it has a pair of edges ${e,f}$ so that $G-e-f$ is matching covered and bipartite; such a pair ${e,f}$ is a removable doubleton. (Each of $K_4$ and the triangular prism $\overline{C_6}$ has three removable doubletons.) Carvalho, Lucchesi and Murty (2002) proved a conjecture of Lov\'asz which states that every brick, distinct from $K_4$, $\overline{C_6}$ and the Petersen graph, has a $b$-invariant edge. A cubic graph is essentially $4$-edge-connected if it is $2$-edge-connected and if its only $3$-cuts are the trivial ones; it is well-known that each such graph is either a brick or a brace; we provide a graph-theoretical proof of this fact. We prove that if $G$ is any essentially $4$-edge-connected cubic brick then its edge-set may be partitioned into three (possibly empty) sets: (i) edges that participate in a removable doubleton, (ii) $b$-invariant edges, and (iii) quasi-$b$-invariant edges; our Main Theorem states that if $G$ has two adjacent quasi-$b$-invariant edges, say $e_1$ and $e_2$, then either $G$ is the Petersen graph or the (near-bipartite) Cubeplex graph, or otherwise, each edge of $G$ (distinct from $e_1$ and $e_2$) is $b$-invariant. As a corollary, we deduce that each essentially $4$-edge-connected cubic non-near-bipartite brick $G$, distinct from the Petersen graph, has at least $|V(G)|$ $b$-invariant edges.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube