Papers
Topics
Authors
Recent
Search
2000 character limit reached

A New Solution Concept and Family of Relaxations for Hybrid Dynamical Systems

Published 21 Mar 2018 in math.DS | (1803.08092v5)

Abstract: We introduce a holistic framework for the analysis, approximation and control of the trajectories of hybrid dynamical systems which display event-triggered discrete jumps in the continuous state. We begin by demonstrating how to explicitly represent the dynamics of this class of systems using a single piecewise-smooth vector field defined on a manifold, and then employ Filippov's solution concept to describe the trajectories of the system. The resulting \emph{hybrid Filippov solutions} greatly simplify the mathematical description of hybrid executions, providing a unifying solution concept with which to work. Extending previous efforts to regularize piecewise-smooth vector fields, we then introduce a parameterized family of smooth control systems whose trajectories are used to approximate the hybrid Filippov solution numerically. The two solution concepts are shown to agree in the limit, under mild regularity conditions.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.