Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Beyond the Low-Degree Algorithm: Mixtures of Subcubes and Their Applications (1803.06521v2)

Published 17 Mar 2018 in cs.LG, cs.CC, cs.DS, and stat.ML

Abstract: We introduce the problem of learning mixtures of $k$ subcubes over ${0,1}n$, which contains many classic learning theory problems as a special case (and is itself a special case of others). We give a surprising $n{O(\log k)}$-time learning algorithm based on higher-order multilinear moments. It is not possible to learn the parameters because the same distribution can be represented by quite different models. Instead, we develop a framework for reasoning about how multilinear moments can pinpoint essential features of the mixture, like the number of components. We also give applications of our algorithm to learning decision trees with stochastic transitions (which also capture interesting scenarios where the transitions are deterministic but there are latent variables). Using our algorithm for learning mixtures of subcubes, we can approximate the Bayes optimal classifier within additive error $\epsilon$ on $k$-leaf decision trees with at most $s$ stochastic transitions on any root-to-leaf path in $n{O(s + \log k)}\cdot\text{poly}(1/\epsilon)$ time. In this stochastic setting, the classic Occam algorithms for learning decision trees with zero stochastic transitions break down, while the low-degree algorithm of Linial et al. inherently has a quasipolynomial dependence on $1/\epsilon$. In contrast, as we will show, mixtures of $k$ subcubes are uniquely determined by their degree $2 \log k$ moments and hence provide a useful abstraction for simultaneously achieving the polynomial dependence on $1/\epsilon$ of the classic Occam algorithms for decision trees and the flexibility of the low-degree algorithm in being able to accommodate stochastic transitions. Using our multilinear moment techniques, we also give the first improved upper and lower bounds since the work of Feldman et al. for the related but harder problem of learning mixtures of binary product distributions.

Citations (33)

Summary

We haven't generated a summary for this paper yet.