Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Small Covers for Near-Zero Sets of Polynomials and Learning Latent Variable Models (2012.07774v1)

Published 14 Dec 2020 in cs.LG, cs.CC, cs.DS, math.AG, math.ST, and stat.TH

Abstract: Let $V$ be any vector space of multivariate degree-$d$ homogeneous polynomials with co-dimension at most $k$, and $S$ be the set of points where all polynomials in $V$ {\em nearly} vanish. We establish a qualitatively optimal upper bound on the size of $\epsilon$-covers for $S$, in the $\ell_2$-norm. Roughly speaking, we show that there exists an $\epsilon$-cover for $S$ of cardinality $M = (k/\epsilon){O_d(k{1/d})}$. Our result is constructive yielding an algorithm to compute such an $\epsilon$-cover that runs in time $\mathrm{poly}(M)$. Building on our structural result, we obtain significantly improved learning algorithms for several fundamental high-dimensional probabilistic models with hidden variables. These include density and parameter estimation for $k$-mixtures of spherical Gaussians (with known common covariance), PAC learning one-hidden-layer ReLU networks with $k$ hidden units (under the Gaussian distribution), density and parameter estimation for $k$-mixtures of linear regressions (with Gaussian covariates), and parameter estimation for $k$-mixtures of hyperplanes. Our algorithms run in time {\em quasi-polynomial} in the parameter $k$. Previous algorithms for these problems had running times exponential in $k{\Omega(1)}$. At a high-level our algorithms for all these learning problems work as follows: By computing the low-degree moments of the hidden parameters, we are able to find a vector space of polynomials that nearly vanish on the unknown parameters. Our structural result allows us to compute a quasi-polynomial sized cover for the set of hidden parameters, which we exploit in our learning algorithms.

Citations (30)

Summary

We haven't generated a summary for this paper yet.