Potentials for Moduli Spaces of A_m-local Systems on Surfaces (1803.06353v1)
Abstract: We study properties of potentials on quivers $Q_{\mathcal{T},m}$ arising from cluster coordinates on moduli spaces of $PGL_{m+1}$-local systems on a topological surface with punctures. To every quiver with potential one can associate a $3d$ Calabi-Yau $A_\infty$-category in such a way that a natural notion of equivalence for quivers with potentials (called "right-equivalence") translates to $A_\infty$-equivalence of associated categories. For any quiver one can define a notion of a "primitive" potential. Our first result is the description of the space of equivalence classes of primitive potentials on quivers $Q_{\mathcal{T}, m}$. Then we provide a full description of the space of equivalence classes of all \emph{generic} potentials for the case $m = 2$ (corresponds to $PGL_3$-local systems). In particular, we show that it is finite-dimensional. This claim extends results of Gei\ss, Labardini-Fragoso and Schr\"oer who have proved analogous statement in $m=1$ case. In many cases $3d$ Calabi-Yau $A_\infty$-categories constructed from quivers with potentials are expected to be realized geometrically as Fukaya categories of certain Calabi-Yau $3$-folds. Bridgeland and Smith gave an explicit construction of Fukaya categories for quivers $Q_{\mathcal{T},m=1}$. We propose a candidate for Calabi-Yau $3$-folds that would play analogous role in higher rank cases, $m > 1$. We study their (co)homology and describe a construction of collections of $3$-dimensional spheres that should play a role of generating collections of Lagrangian spheres in corresponding Fukaya categories.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.