Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 83 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 16 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 109 tok/s Pro
Kimi K2 181 tok/s Pro
GPT OSS 120B 468 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Noncommutative Mather-Yau theorem and its applications to Calabi-Yau algebras (1803.06128v5)

Published 16 Mar 2018 in math.AG, math.RA, and math.RT

Abstract: In this article, we prove that for a finite quiver $Q$ the equivalence class of a potential up to formal change of variables of the complete path algebra $\widehat{\mathbb{C} Q}$, is determined by its Jacobi algebra together with the class in its 0-th Hochschild homology represented by the potential assuming the Jacobi algebra is finite dimensional. This is an noncommutative analogue of the famous theorem of Mather and Yau on isolated hypersurface singularities. We also prove that the right equivalence class of a potential is determined by its sufficiently high jet assuming the Jacobi algebra is finite dimensional. These two theorems can be viewed as a first step towards the singularity theory of noncommutative power series. As an application, we show that if the Jacobi algebra is finite dimensional then the corresponding complete Ginzburg dg-algebra, and the (topological) generalized cluster category thereof, are determined by the isomorphic type of the Jacobi algebra together with the class in its 0-th Hochschild homology represented by the potential.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (2)