Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 156 tok/s Pro
GPT OSS 120B 441 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Generalized Taylor operators and Hermite subdivision schemes (1803.05248v1)

Published 14 Mar 2018 in math.NA

Abstract: Hermite subdivision schemes act on vector valued data that is not only considered as functions values in $\mathbb{R}r$, but as consecutive derivatives, which leads to a mild form of level dependence of the scheme. Previously, we have proved that a property called spectral condition or sum rule implies a factorization in terms of a generalized difference operator that gives rise to a "difference scheme" whose contractivity governs the convergence of the scheme. But many convergent Hermite schemes, for example, those based on cardinal splines, do not satisfy the spectral condition. In this paper, we generalize the property in a way that preserves all the above advantages: the associated factorizations and convergence theory. Based on these results, we can include the case of cardinal splines and also enables us to construct new types of convergent Hermite subdivision schemes.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube