Synchronization of stochastic mean field networks of Hodgkin-Huxley neurons with noisy channels (1803.04379v2)
Abstract: In this work we are interested in a mathematical model of the collective behavior of a fully connected network of finitely many neurons, when their number and when time go to infinity. We assume that every neuron follows a stochastic version of the Hodgkin-Huxley model, and that pairs of neurons interact through both electrical and chemical synapses, the global connectivity being of mean field type. When the leak conductance is strictly positive, we prove that if the initial voltages are uniformly bounded and the electrical interaction between neurons is strong enough, then, uniformly in the number of neurons, the whole system synchronizes exponentially fast as time goes to infinity, up to some error controlled by (and vanishing with) the channels noise level. Moreover, we prove that if the random initial condition is exchangeable, on every bounded time interval the propagation of chaos property for this system holds (regardless of the interaction intensities). Combining these results, we deduce that the nonlinear McKean-Vlasov equation describing an infinite network of such neurons concentrates, as time goes to infinity, around the dynamics of a single Hodgkin-Huxley neuron with chemical neurotransmitter channels. Our results are illustrated and complemented with numerical simulations.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.