Generalised fluxes, Yang-Baxter deformations and the O(d,d) structure of non-abelian T-duality (1803.03971v3)
Abstract: Based on the construction of Poisson-Lie T-dual $\sigma$-models from a common parent action we study a candidate for the non-abelian respectively Poisson-Lie T-duality group. This group generalises the well-known abelian T-duality group O(d,d) and we explore some of its subgroups, namely factorised dualities, B- and $\beta$-shifts. The corresponding duality transformed $\sigma$-models are constructed and interpreted as generalised (non-geometric) flux backgrounds. We also comment on generalisations of results and techniques known from abelian T-duality. This includes the Lie algebra cohomology interpretation of the corresponding non-geometric flux backgrounds, remarks on a double field theory based on non-abelian T-duality and an application to the investigation of Yang-Baxter deformations. This will show that homogeneously Yang-Baxter deformed $\sigma$-models are exactly the non-abelian T-duality $\beta$-shifts when applied to principal chiral models.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.