Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 83 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 83 tok/s Pro
Kimi K2 109 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Coherent states for ladder operators of general order related to exceptional orthogonal polynomials (1803.01318v1)

Published 4 Mar 2018 in math-ph, math.MP, and quant-ph

Abstract: We construct the coherent states of general order, $m$ for the ladder operators, $c(m)$ and $c\dagger(m)$, which act on rational deformations of the harmonic oscillator. The position wavefunctions of the eigenvectors involve type III Hermite exceptional orthogonal polynomials. We plot energy expectations, time-dependent position probability densities for the coherent states and for the even and odd cat states, Wigner functions, and Heisenberg uncertainty relations. We find generally non-classical behaviour, with one exception: there is a regime of large magnitude of the coherent state parameter, $z$, where the otherwise indistinct position probability density separates into $m+1$ distinct wavepackets oscillating and colliding in the potential, forming interference fringes when they collide. The Mandel $Q$ parameter is calculated to find sub-Poissonian statistics, another indicator of non-classical behaviour. We plot the position standard deviation and find squeezing in many of the cases. We calculate the two-photon-number probability density for the output state when the $m=4$, $\mu=-5$ coherent states (where $\mu$ labels the lowest weight in the superposition) are placed on one arm of a beamsplitter. We find that it does not factorize, again indicating non-classical behaviour. Calculation of the linear entropy for this beamsplitter output state shows significant entanglement, another non-classical feature. We also construct linearized versions, $\tilde c(m)$, of the annihilation operators and their coherent states and calculate the same properties that we investigate for the coherent states. For these we find similar behaviour to the $c(m)$ coherent states, at much smaller magnitudes of $z$, but comparable average energies.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube