Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 84 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 96 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Kimi K2 189 tok/s Pro
2000 character limit reached

Spectra of Eigenstates in Fermionic Tensor Quantum Mechanics (1802.10263v4)

Published 28 Feb 2018 in hep-th and cond-mat.str-el

Abstract: We study the $O(N_1)\times O(N_2)\times O(N_3)$ symmetric quantum mechanics of 3-index Majorana fermions. When the ranks $N_i$ are all equal, this model has a large $N$ limit which is dominated by the melonic Feynman diagrams. We derive an integral formula which computes the number of $SO(N_1)\times SO(N_2)\times SO(N_3)$ invariant states for any set of $N_i$. For equal ranks the number of singlets is non-vanishing only when $N$ is even, and it exhibits rapid growth: it jumps from $36$ in the $O(4)3$ model to $595354780$ in the $O(6)3$ model. We derive bounds on the values of energy, which show that they scale at most as $N3$ in the large $N$ limit, in agreement with expectations. We also show that the splitting between the lowest singlet and non-singlet states is of order $1/N$. For $N_3=1$ the tensor model reduces to $O(N_1)\times O(N_2)$ fermionic matrix quantum mechanics, and we find a simple expression for the Hamiltonian in terms of the quadratic Casimir operators of the symmetry group. A similar expression is derived for the complex matrix model with $SU(N_1)\times SU(N_2)\times U(1)$ symmetry. Finally, we study the $N_3=2$ case of the tensor model, which gives a more intricate complex matrix model whose symmetry is only $O(N_1)\times O(N_2)\times U(1)$. All energies are again integers in appropriate units, and we derive a concise formula for the spectrum. The fermionic matrix models we studied possess standard 't Hooft large $N$ limits where the ground state energies are of order $N2$, while the energy gaps are of order $1$.

Citations (58)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.