Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

An artificial neural network framework for reduced order modeling of transient flows (1802.09474v2)

Published 26 Feb 2018 in physics.flu-dyn and physics.comp-ph

Abstract: This paper proposes a supervised machine learning framework for the non-intrusive model order reduction of unsteady fluid flows to provide accurate predictions of non-stationary state variables when the control parameter values vary. Our approach utilizes a training process from full-order scale direct numerical simulation data projected on proper orthogonal decomposition (POD) modes to achieve an artificial neural network (ANN) model with reduced memory requirements. This data-driven ANN framework allows for a nonlinear time evolution of the modal coefficients without performing a Galerkin projection. Our POD-ANN framework can thus be considered an equation-free approach for latent space dynamics evolution of nonlinear transient systems and can be applied to a wide range of physical and engineering applications. Within this framework we introduce two architectures, namely sequential network (SN) and residual network (RN), to train the trajectory of modal coefficients. We perform a systematic analysis of the performance of the proposed reduced order modeling approaches on prediction of a nonlinear wave-propagation problem governed by the viscous Burgers equation, a simplified prototype setting for transient flows. We find that the POD-ANN-RN yields stable and accurate results for test problems assessed both within inside and outside of the database range and performs significantly better than the standard intrusive Galerkin projection model. Our results show that the proposed framework provides a non-intrusive alternative to the evolution of transient physics in a POD basis spanned space, and can be used as a robust predictive model order reduction tool for nonlinear dynamical systems.

Summary

We haven't generated a summary for this paper yet.