Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Memory embedded non-intrusive reduced order modeling of non-ergodic flows (1910.07649v1)

Published 16 Oct 2019 in physics.flu-dyn and physics.comp-ph

Abstract: Generating a digital twin of any complex system requires modeling and computational approaches that are efficient, accurate, and modular. Traditional reduced order modeling techniques are targeted at only the first two but the novel non-intrusive approach presented in this study is an attempt at taking all three into account effectively compared to their traditional counterparts. Based on dimensionality reduction using proper orthogonal decomposition (POD), we introduce a long short-term memory (LSTM) neural network architecture together with a principal interval decomposition (PID) framework as an enabler to account for localized modal deformation, which is a key element in accurate reduced order modeling of convective flows. Our applications for convection dominated systems governed by Burgers, Navier-Stokes, and Boussinesq equations demonstrate that the proposed approach yields significantly more accurate predictions than the POD-Galerkin method, and could be a key enabler towards near real-time predictions of unsteady flows.

Summary

We haven't generated a summary for this paper yet.