Transfer matrix spectrum for cyclic representations of the 6-vertex reflection algebra II (1802.08853v2)
Abstract: This article is a direct continuation of [1] where we begun the study of the transfer matrix spectral problem for the cyclic representations of the trigonometric 6-vertex reflection algebra associated to the Bazhanov-Stroganov Lax operator. There we addressed this problem for the case where one of the K-matrices describing the boundary conditions is triangular. In the present article we consider the most general integrable boundary conditions, namely the most general boundary K-matrices satisfying the reflection equation. The spectral analysis is developed by implementing the method of Separation of Variables (SoV). We first design a suitable gauge transformation that enable us to put into correspondence the spectral problem for the most general boundary conditions with another one having one boundary K-matrix in a triangular form. In these settings the SoV resolution can be obtained along an extension of the method described in [1]. The transfer matrix spectrum is then completely characterized in terms of the set of solutions to a discrete system of polynomial equations in a given class of functions and equivalently as the set of solutions to an analogue of Baxter's T-Q functional equation. We further describe scalar product properties of the separate states including eigenstates of the transfer matrix.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.