Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Detection limits in the high-dimensional spiked rectangular model (1802.07309v3)

Published 20 Feb 2018 in math.ST, math.PR, stat.ML, and stat.TH

Abstract: We study the problem of detecting the presence of a single unknown spike in a rectangular data matrix, in a high-dimensional regime where the spike has fixed strength and the aspect ratio of the matrix converges to a finite limit. This setup includes Johnstone's spiked covariance model. We analyze the likelihood ratio of the spiked model against an "all noise" null model of reference, and show it has asymptotically Gaussian fluctuations in a region below---but in general not up to---the so-called BBP threshold from random matrix theory. Our result parallels earlier findings of Onatski et al.\ (2013) and Johnstone-Onatski (2015) for spherical spikes. We present a probabilistic approach capable of treating generic product priors. In particular, sparsity in the spike is allowed. Our approach is based on Talagrand's interpretation of the cavity method from spin-glass theory. The question of the maximal parameter region where asymptotic normality is expected to hold is left open. This region is shaped by the prior in a non-trivial way. We conjecture that this is the entire paramagnetic phase of an associated spin-glass model, and is defined by the vanishing of the replica-symmetric solution of Lesieur et al.\ (2015).

Citations (20)

Summary

We haven't generated a summary for this paper yet.