Papers
Topics
Authors
Recent
2000 character limit reached

Asymptotic normality and analysis of variance of log-likelihood ratios in spiked random matrix models

Published 2 Apr 2018 in math.ST, cs.IT, math.IT, math.PR, and stat.TH | (1804.00567v1)

Abstract: The present manuscript studies signal detection by likelihood ratio tests in a number of spiked random matrix models, including but not limited to Gaussian mixtures and spiked Wishart covariance matrices. We work directly with multi-spiked cases in these models and with flexible priors on the signal component that allow dependence across spikes. We derive asymptotic normality for the log-likelihood ratios when the signal-to- noise ratios are below certain thresholds. In addition, we show that the variances of the log-likelihood ratios can be asymptotically decomposed as the sums of those of a collection of statistics which we call bipartite signed cycles.

Citations (6)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.