Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

An Efficient Semismooth Newton Based Algorithm for Convex Clustering (1802.07091v1)

Published 20 Feb 2018 in math.OC and cs.LG

Abstract: Clustering may be the most fundamental problem in unsupervised learning which is still active in machine learning research because its importance in many applications. Popular methods like K-means, may suffer from instability as they are prone to get stuck in its local minima. Recently, the sum-of-norms (SON) model (also known as clustering path), which is a convex relaxation of hierarchical clustering model, has been proposed in [7] and [5] Although numerical algorithms like ADMM and AMA are proposed to solve convex clustering model [2], it is known to be very challenging to solve large-scale problems. In this paper, we propose a semi-smooth Newton based augmented Lagrangian method for large-scale convex clustering problems. Extensive numerical experiments on both simulated and real data demonstrate that our algorithm is highly efficient and robust for solving large-scale problems. Moreover, the numerical results also show the superior performance and scalability of our algorithm compared to existing first-order methods.

Citations (26)

Summary

We haven't generated a summary for this paper yet.