Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Euclidean Distance Matrix Model for Convex Clustering (2105.04947v3)

Published 11 May 2021 in cs.DM

Abstract: Clustering has been one of the most basic and essential problems in unsupervised learning due to various applications in many critical fields. The recently proposed sum-of-nums (SON) model by Pelckmans et al. (2005), Lindsten et al. (2011) and Hocking et al. (2011) has received a lot of attention. The advantage of the SON model is the theoretical guarantee in terms of perfect recovery, established by Sun et al. (2018). It also provides great opportunities for designing efficient algorithms for solving the SON model. The semismooth Newton based augmented Lagrangian method by Sun et al. (2018) has demonstrated its superior performance over the alternating direction method of multipliers (ADMM) and the alternating minimization algorithm (AMA). In this paper, we propose a Euclidean distance matrix model based on the SON model. An efficient majorization penalty algorithm is proposed to solve the resulting model. Extensive numerical experiments are conducted to demonstrate the efficiency of the proposed model and the majorization penalty algorithm.

Citations (1)

Summary

We haven't generated a summary for this paper yet.