Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Deterministic Protocol for Sequential Asymptotic Learning (1802.06871v1)

Published 9 Jan 2018 in cs.GT and cs.DM

Abstract: In the classic herding model, agents receive private signals about an underlying binary state of nature, and act sequentially to choose one of two possible actions, after observing the actions of their predecessors. We investigate what types of behaviors lead to asymptotic learning, where agents will eventually converge to the right action in probability. It is known that for rational agents and bounded signals, there will not be asymptotic learning. Does it help if the agents can be cooperative rather than act selfishly? This is simple to achieve if the agents are allowed to use randomized protocols. In this paper, we provide the first deterministic protocol under which asymptotic learning occurs. In addition, our protocol has the advantage of being much simpler than previous protocols.

Citations (5)

Summary

We haven't generated a summary for this paper yet.