Sequential Naive Learning
Abstract: We analyze boundedly rational updating from aggregate statistics in a model with binary actions and binary states. Agents each take an irreversible action in sequence after observing the unordered set of previous actions. Each agent first forms her prior based on the aggregate statistic, then incorporates her signal with the prior based on Bayes rule, and finally applies a decision rule that assigns a (mixed) action to each belief. If priors are formed according to a discretized DeGroot rule, then actions converge to the state (in probability), i.e., \emph{asymptotic learning}, in any informative information structure if and only if the decision rule satisfies probability matching. This result generalizes to unspecified information settings where information structures differ across agents and agents know only the information structure generating their own signal. Also, the main result extends to the case of $n$ states and $n$ actions.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.