Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
175 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

WebEye - Automated Collection of Malicious HTTP Traffic (1802.06012v1)

Published 16 Feb 2018 in cs.CR and cs.LG

Abstract: With malware detection techniques increasingly adopting machine learning approaches, the creation of precise training sets becomes more and more important. Large data sets of realistic web traffic, correctly classified as benign or malicious are needed, not only to train classic and deep learning algorithms, but also to serve as evaluation benchmarks for existing malware detection products. Interestingly, despite the vast number and versatility of threats a user may encounter when browsing the web, actual malicious content is often hard to come by, since prerequisites such as browser and operating system type and version must be met in order to receive the payload from a malware distributing server. In combination with privacy constraints on data sets of actual user traffic, it is difficult for researchers and product developers to evaluate anti-malware solutions against large-scale data sets of realistic web traffic. In this paper we present WebEye, a framework that autonomously creates realistic HTTP traffic, enriches recorded traffic with additional information, and classifies records as malicious or benign, using different classifiers. We are using WebEye to collect malicious HTML and JavaScript and show how datasets created with WebEye can be used to train machine learning based malware detection algorithms. We regard WebEye and the data sets it creates as a tool for researchers and product developers to evaluate and improve their AI-based anti-malware solutions against large-scale benchmarks.

Citations (4)

Summary

We haven't generated a summary for this paper yet.