Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

High-Dimensional Entanglement in States with Positive Partial Transposition (1802.04975v1)

Published 14 Feb 2018 in quant-ph, math-ph, and math.MP

Abstract: Genuine high-dimensional entanglement, i.e. the property of having a high Schmidt number, constitutes a resource in quantum communication, overcoming limitations of low-dimensional systems. States with a positive partial transpose (PPT), on the other hand, are generally considered weakly entangled, as they can never be distilled into pure entangled states. This naturally raises the question, whether high Schmidt numbers are possible for PPT states. Volume estimates suggest that optimal, i.e. linear, scaling in local dimension should be possible, albeit without providing an insight into the possible slope. We provide the first explicit construction of a family of PPT states that achieves linear scaling in local dimension and we prove that random PPT states typically share this feature. Our construction also allows us to answer a recent question by Chen et al. on the existence of PPT states whose Schmidt number increases by an arbitrarily large amount upon partial transposition. Finally, we link the Schmidt number to entangled sub-block matrices of a quantum state. We use this connection to prove that quantum states invariant under partial transposition on the smaller of their two subsystems cannot have maximal Schmidt number. This generalizes a well-known result by Kraus et al. We also show that the Schmidt number of absolutely PPT states cannot be maximal, contributing to an open problem in entanglement theory.

Summary

We haven't generated a summary for this paper yet.